## **Planteome Overview**

Common Reference Ontologies for Plants (cROP) and Planteome Tools for Integrative Plant Genomics

- Centralized platform where **reference ontologies for plants** will be used to access plant genomics data resources across a wide range of plant species
- Online informatics portal for **ontology-based**, **annotated data** for plant germplasm, gene expression, and non-model genomes
- Smart and semantic data query, analysis, visualization and community-based annotation and curation tools



- Plant Ontology (PO)
- Plant Trait Ontology (TO)
- Plant Stress Ontology (PSO)
- Plant Experimental Conditions
   Ontology (PECO/EO)
- Gene Ontology (plants)
- Phenotypic Qualities Ontology (PATO)
- Cell Type Ontology (CL)
- Chemicals (ChEBI)
- Protein Ontology (PRO)



## **Progress and Success Stories**



### **Plant Ontology**

www.plantontology.org

- A highly successful, collaborative, publicly-available resource with more than 50 collaborating partners
- Links plant genomics data sets to terms describing plant anatomy and developmental stages across all plant species for comparative studies and classroom teaching
- Currently over 1200 terms linked to more than 2.2 million data points

from 23 plant species Relations -is a <del>[</del>] - part\_of ←has part develops\_from ← L - located in ☐ 0 PO:0009011 : plant structure [110909] ■ PO:0025498 : cardinal part of multi-tissue plant structure [47530] O PO:0025497 : collective plant structure [103588] ■ PO:0025099 : embryo plant structure [41230] ⊕ PO:0000004 : in vitro plant structure [19145] n PO:0025496 : multi-tissue plant structure [103668 ⊕ PO:0009002 : plant cell [104207] D PO:0009072 : plant ovary [374] PO:0009007 : portion of plant tissue [98346] ■ PO:0030078 : rhizoid [0] ⊕ PO:0000282 : trichome [372] ■ PO:0000003: whole plant [104955]



Cooper L et al. Plant Cell Physiol 2013;54:e1

**Arnaud E, Cooper L, et al.** (2012) Towards a Reference Plant Trait Ontology for Modeling Knowledge of Plant Traits and Phenotypes. PKEOD. Barcelona, Spain, pp 220–225.



# Data Acquisition and Management





The Planteome informatics portal and the data store organization

# Structure of the Planteome Project: Data Generation, Access and Sharing- Open and Collaborative

Planteome

**iPlant** Hosting platform

## **Expansion & Maintenance of the Reference Ontologies for Plants and US Outreach**

- Coordinate the overall project and lead Ontology Development
- Use case for the semantic integration framework
- Develop data warehouse, visualization and analysis tools
- Manage online resource at iPlant

**Dennis Stevenson**, *Co-PI*New York Botanic

Garden.

Chris Mungall, Co-PI
Gene Ontology

Georgios Gkoutos, Co-PI PATO, Aberystwyth, UK

**Barry Smith**OBO-Foundry & NCBO

**Pankaj Jaiswal,** Pl **Laurel Cooper**,

Coordinator

**Justin Elser**, Sys. Admin Oregon State University

**NSF** 

Gramene, KBase, SGN, MaizeGDB, AIP, UniProt, SoyBase, Oryzabase and many others...

**EBI** Paul Kersey

Ruth Bastow- GARnet Chris Rawlings-Rothamsted Research UK, BBSRC

Elizabeth Arnaud, Co-PI

Crop Ontology
CGIAR Consortium

#### Crop Ontology and the Integrated Breeding Platform

- Development of crop-specific ontologies to describe traits and annotations of
- wheat, rice, maize and other crops: cassava, sorghum, potato, yam and others

Divseek

- Contribution to the semantic framework
- Community Engagement, Breeding for Development

**Phenotype RCN** 

**John Doonan**, National Plant Phenomics Center Aberystwyth Univ. Fabio Florani - Julich Bjorn Usadel – Aacehn Uli Schurr – Julich DROPS Germany

Cyril Pommier –BAP; Ephesis
Jacques Legouis – GEDEC,
Breedwheat

Francois Tardieu- Phenome, DROPS France, INRA Luke Ramsay
Dave Marshall
J. Hutton

Intellectual Property governed under Creative Commons by Attribution License

#### Semantic integration framework

- Develop Trait Ontology for wheat, barley & Brassicaceae
- Environment Ontology from Phenotyping platforms
- Warehouse, mirroring on server -EBI
- Community engagement

**iDIV** 



# Planteome and DivSeek



### Many points of coincidence between Planteome and DivSeek:

- Developing common standards and descriptors that allow data to be structured, shared and reconciled with existing data management schemes and that facilitate use by diverse scientific, crop and breeding communities.- Phase 1 Case Studies and Pilot Projects
- 2. Establishing **new tools** and **approaches** that enable data exploration, mining and utilization
- 3. Characterize crop diversity using state-of-the-art genomic, phenomic and molecular technologies
- 4. Promote awareness of the value of crop diversity and mobilize the diverse resources required to accomplish these goals.